Optical quorum cycles for efficient communication

Thumbnail Image
Date
2015-09-04
Authors
Kleinheksel, Cory
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Somani, Arun
Senior Associate Dean
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Many optical networks face heterogeneous communication requests requiring topologies to be efficient and fault tolerant. For efficiency and distributed control, it is common in distributed systems and algorithms to group nodes into intersecting sets referred to as quorum sets. We show efficiency and distributed control can also be accomplished in optical network routing by applying the same established quorum set theory. Cycle-based optical network routing, whether using SONET rings or p-cycles, provides the sufficient reliability in the network. Light-trails forming a cycle allow broadcasts within a cycle to be used for efficient multicasts. Cyclic quorum sets also have all pairs of nodes occurring in one or more quorums, so efficient, arbitrary unicast communication can occur between any two nodes. Efficient broadcasts to all network nodes are possible by a node broadcasting to all quorum cycles to which it belongs (O(N−−√)). In this paper, we propose applying the distributed efficiency of the quorum sets to routing optical cycles based on light-trails. With this new method of topology construction, unicast and multicast communication requests do not need to be known or even modeled a priori. Additionally, in the presence of network link faults, greater than 99 % average coverage enables the continued operation of nearly all arbitrary unicast and multicast requests in the network. Finally, to further improve the fault coverage, an augmentation to the ECBRA cycle finding algorithm is proposed.

Comments

This is a post-peer-review, pre-copyedit version of an article published in Photonic Network Communications. The final authenticated version is available online at DOI: 10.1007/s11107-015-0561-8. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections