Wireless security for secure facilities

Thumbnail Image
Mitchell, DeAntrious
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of

This thesis presents methods for securing a facility that has wireless connectivity. The goal of this research is to develop a solution to securing a facility that utilizes wireless communications. The research will introduce methods to track and locate the position of attackers. This research also introduces the idea of using a Honeynet system for added security. This research uses what is called Defense-In-Depth. Defense-in-depth is when multiple layers of security are used. The first of the layers is the Zone of Interference. This Zone is an area where jammer transmitters and directive antennas are set up to take advantage of the near-far-effect. The idea is to use the near-far-effect to give a stronger signal on the perimeter of the secure area, to mask any signals escaping from the secure area. This Zone uses directive Yagi antenna arrays to direct the radiation. There are multiple jamming methods that are utilized within this Zone. The next layer of security is the Honeynet Zone. The idea is to make an attacker believe that they are seeing real network traffic. This is done at the Honeynet Zone once a device has been determined to be unfriendly. Decoy mobile devices are first placed within the Honeynet Zone. Spoofed traffic is then created between the Honeynet base stations and the decoy mobile devices zone; using adaptive antennas incorporated within the design to face the signals away from the inside secure area. The third defense is position location and tracking. The idea is to have constant tracking of all devices in the area. There are several methods available to locate and track a device that is giving off an RF signal. This thesis looks at combining all these methods into an integrated, and more robust, facility security system.

Wed Jan 01 00:00:00 UTC 2003