Thermodynamic Preference for Atom Adsorption on versus Intercalation into Multilayer Graphene

No Thumbnail Available
Li, Wei
Huang, Li
Tringides, Michael
Evans, James
Han, Yong
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Ames Laboratory

The thermodynamic preference of a foreign atom for adsorption on versus intercalation into a graphitic surface is of fundamental and widespread interest. From an exhaustive first-principles density functional theory investigation for 38 typical elements over the periodic table, we reveal a quasilinear correlation between the Shannon effective ionic radius and the chemical-potential difference for a single atom from adsorption to intercalation at multilayer graphene surfaces. A critical Shannon radius is found to be around 0.10 nm, below (above) which intercalation (adsorption) is more favorable for elements with ionic-like bonding after intercalation. Single atoms with van der Waals-biased bonding show some deviation from the linear relationship, while single atoms for the elements with covalent-like bonding do not favor intercalation relative to adsorption. An energy decomposition analysis indicates that the chemical-potential difference determining the thermodynamic preference of a foreign atom for adsorption versus intercalation results from the competition between the electronic and elastic strain effects.

Subject Categories