Mechanical detwinning device for anisotropic resistivity measurements in samples requiring dismounting for particle irradiation

Thumbnail Image
Date
2020-07-09
Authors
Timmons, Erik
Tanatar, Makariy
Liu, Yong
Cho, Kyuil
Kończykowski, M.
Prozorov, Ruslan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lograsso, Thomas
Ames Laboratory Division Director
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Uniaxial stress is used to detwin the samples of orthorhombic iron based superconductors to study their intrinsic electronic anisotropy. Here, we describe the development of a new detwinning setup enabling variable-load stress-detwinning with easy sample mounting/dismounting without the need to re-solder the contacts. It enables the systematic study of the anisotropy evolution as a function of an external parameter when the sample is modified between the measurements. In our case, the external parameter is the dose of 2.5 MeV electron irradiation at low temperature. We illustrate the approach by studying resistivity anisotropy in single crystals of Ba1−xKxFe2As2 at x = 0.25, where the much discussed unusual re-entrance of the tetragonal C4 phase, C4 → C2 → C4, is observed on cooling. With the described technique, we found a significant anisotropy increase in the C2 phase after electron irradiation with a dose of 2.35 C/cm2.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections