Theoretical study of information capacity of Hopfield neural network and its application to expert database system

Thumbnail Image
Lee, Kesig
Major Professor
Suresh C. Kothari
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence

Related Units

Journal Issue
Is Version Of

The conventional computer systems can solve complex mathematical problems very fast, yet it can't efficiently process high-level intelligent functions of human brain such as pattern recognition, categorization, and associative memory;A neural network is proposed as a computational structure for modeling high-level intelligent functions of human brain. Recently, neural networks have attracted considerable attentions as a novel computational system because of the following expected benefits which are often considered as generic characteristics of human brain: (1) massive parallelism, (2) learning as a means of efficient knowledge acquisition, and (3) robustness arising from distributed information processing;Neural networks are being studied from a different point of view in many disciplines such as psychology, mathematics, statistics, physics, engineering, computer science, neuroscience, biology, and linguistics. Depending on disciplines, neural networks have diverse nomenclature as artificial neural networks, connectionism, PDPs, adaptive systems, adaptive networks, and neurocomputers;We study the neural networks from the computer scientist's point of view. The objectives of this research work are: (1) providing a global picture of the current state of the art by surveying a score of neural networks chronologically and functionally, (2) providing a theoretical justification for well-known empirical results about the information capacity of Hopfield neural network, and (3) providing an experimental logical database system using Hopfield neural network as an inference engine.

Tue Jan 01 00:00:00 UTC 1991