Island-size scaling in surface deposition processes

Thumbnail Image
Bartelt, M.
Tringides, Michael
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Evans, James
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of

Diffusion-mediated nucleation and growth of islands during deposition occurs essentially irreversibly in a variety of systems. We provide a scaling theory for the full island-size distribution, both with the ratio of surface diffusion to deposition rates and with time. Scaling functions and exponents are determined by simulation and explained analytically by an unconventional rate-equation analysis. Experimental tests for theoretical predictions are discussed, including the scaling of superlattice beam profiles for diffraction studies of heteroepitaxial systems.


This article is published as Bartelt, M. C., M. C. Tringides, and J. W. Evans. "Island-size scaling in surface deposition processes." Physical Review B 47, no. 20 (1993): 13891, doi:10.1103/PhysRevB.47.13891. Posted with permission.

Fri Jan 01 00:00:00 UTC 1993