Ultrasonication in Soy Processing for Enhanced Protein and Sugar Yields and Subsequent Bacterial Nisin Production

Thumbnail Image
Date
2007-06-01
Authors
Karki, Bishnu
Mitra, Debjani
Pometto, Anthony
Khanal, Samir
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lamsal, Buddhi
Professor
Person
Grewell, David
Affiliate Professor
Person
van Leeuwen, Johannes
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Soy protein recovery from hexane-defatted soybean flakes using conventional methods is generally low. Importantly, some tightly-bound sugar in the soy flakes ends up in soy protein, thereby deteriorating the usefulness and quality of soy protein as a food ingredient. This research investigated the use of high-power ultrasound prior to soy protein extraction to simultaneously enhance protein yield and facilitate more sugar release in soy whey. The nutrient-rich soy whey was then used as a cheap growth medium to produce high-value nisin using Lactococcus lactis subsp. lactis. A nisin sensitive organism Micrococcus luteus was used as an indicator organism for international unit determination of nisin production as compared to standard. Soy flakes and water was mixed at the ratio of 1:10 (w/w). The slurry was then sonicated for 15, 30, 60 and 120 sec at a frequency of 20 kHz. The ultrasonic amplitude was maintained at 84 µmpp (peak to peak amplitude in µm) for all sonication durations. The results showed that with ultrasound pretreatment, the protein yield improved as much as by 46% in soy extract and sugar release by 50% with respect to nonsonicated samples (control). To maximize nisin production from soy whey, different parameters, such as aeration/agitation and incubation period were optimized. Nisin production from standard medium, DeMan, Rogosa and Sharpe (MRS) and soy whey was tested and compared. Maximum nisin production was achieved in stationary conditions and showed a continuous increase in yield till 48h of incubation (incubation period beyond that was not tested). Maximum nisin yield of 1.78 g/L of soy whey was obtained at 30°C and pH of 4.5 as opposed to 2.96 g/L of nisin with MRS medium.

Comments

This is an ASABE Meeting Presentation, Paper No. 076205.

Description
Keywords
Citation
DOI
Source
Copyright
Mon Jan 01 00:00:00 UTC 2007