The effect of macrophage phenotype and surface modification of liposomes on internalization

Thumbnail Image
Date
2016-01-01
Authors
Ma, Lilusi
Major Professor
Advisor
Kaitlin Bratlie
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The effects of surface modifications on liposomes using a library of arginine derivatives for improved drug delivery were examined. Encapsulating either fluorescein or doxorubicin, both unmodified liposome and modified liposomes were tested for their drug delivery properties and propensity for internalization with macrophages. The modified liposomes were characterized by dynamic light scattering (DLS) and zeta potential. The resulting liposomes were able to encapsulate doxorubicin with a loading efficiency greater than 90% and cumulative releases of less than 15% after 144 h. The internalization of these particles was examined by loading the liposomes with fluorescein or doxorubicin to test internalization through fluorescence level and half maximal inhibitory concentration (IC50), respectively. Macrophages were activated with LPS or IL-4 to induce M1- or M2-like phenotypes. Naïve macrophages were also studied. Most modified liposomes enhanced the cytotoxicity of doxorubicin compared to unmodified liposomes. Macrophage phenotype was also observed to influence the cytotoxicity of the modified liposomes, with some modified liposomes enhancing the cytotoxicity in LPS stimulated macrophages and some enhancing IL-4 stimulated cells.

Comments
Description
Keywords
Citation
Source
Copyright
Fri Jan 01 00:00:00 UTC 2016