Rational design of antimicrobial nanomedicines

Thumbnail Image
Date
2020-01-01
Authors
Mullis, Adam
Major Professor
Advisor
Balaji Narasimhan
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

We are living in a post-antibiotic era. The miracle drugs that shaped our modern healthcare system are losing effectiveness, and we aren't developing enough new drugs to meet patient needs. Innovative strategies to kill resistant bacteria and protect our antibiotic arsenal are urgently needed. Biodegradable polyanhydride nanoparticle-based nanomedicines could shape the next generation of antimicrobial therapies by improving drug biodistribution and targeting. By controlling drug release and improving antibiotic potency, they provide dose sparing and dose frequency reduction capabilities that could improve compliance. Unfortunately, traditional screening approaches are impractical for nanomedicines due to the massive physicochemical dataspace contributed by drug, polymer, and nanoparticle properties. Additionally, the relationships between these properties and nanomedicine efficacy are complex and nonlinear, impeding first principles modeling. Improved methods of screening and modeling antimicrobial nanomedicines are needed to realize their full potential.

In this dissertation, we report the adaptation of a high-throughput method to rapidly screen a novel polyanhydride copolymer chemical space for interesting drug delivery properties. These CPTEG:SA copolymers were shown to erode more rapidly than traditional polyanhydride copolymers, resulting in rapid, chemistry-dependent drug release within three days. This rapid release could be beneficial for fast-growing pathogens by providing a quick, suppressive antibiotic dose that is maintained over several days. The high-throughput method was adapted to synthesize polymer-drug films to screen for thermodynamic mixing interactions that influence release kinetics.

These methods enabled high-throughput synthesis of antibiotic-loaded nanoparticle libraries, which were evaluated for their controlled release capabilities and antimicrobial efficacy against the opportunistic, resistant pathogen Burkholderia cepacia. Multivariate data analytics approaches were used to identify key polymer, drug, and nanoparticle properties that determine nanomedicine release kinetics and efficacy. Graph theory was used to reduce the dimensionality of the descriptor data while preserving nonlinear relationships between formulations, enabling interrogation of nanomedicine design pathways. The dimensionally compressed descriptor space was used to develop predictive models for nanomedicine release kinetics and efficacy. These models successfully predicted the release kinetics and encapsulation efficiency for nanoparticles encapsulating two drugs not included in the training data set. In terms of efficacy, the model successfully predicted whether untested individual nanomedicines or nanomedicine cocktails would provide improved potency over soluble drug.

From these results, we proposed two informatics-assisted frameworks to rapidly screen nanomedicine candidates capable of killing resistant bacteria and controlling drug release. Overall, this dissertation has provided the first steps toward a broader framework for the rational design of antimicrobial nanomedicines. Lead candidates identified by this framework could provide new therapies against resistant pathogens and enable repurposing of existing antibiotics limited by resistance.

Comments
Description
Keywords
Citation
Source
Copyright
Fri May 01 00:00:00 UTC 2020