A dripper-TDR method for in situ determination of hydraulic conductivity and chemical transport properties of surface soils

Thumbnail Image
Date
2006-02-01
Authors
Al-Jabri, Salem
Lee, Jaehoon
Gaur, Anju
Jaynes, Dan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Field determined hydraulic and chemical transport properties can be useful for the protection of groundwater resources from land-applied chemicals. Most field methods to determine flow and transport parameters are either time or energy consuming and/or they provide a single measurement for a given time period. In this study, we present a dripper-TDR field method that allows measurement of hydraulic conductivity and chemical transport parameters at multiple field locations within a short time period. Specifically, the dripper-TDR determines saturated hydraulic conductivity (Ks), macroscopic capillary length (λc), immobile water fraction (θim/θ), mass exchange coefficient (α) and dispersion coefficient (Dm). Multiple dripper lines were positioned over five crop rows in a field. Background and step solutions were applied through drippers to determine surface hydraulic conductivity parameters at 44 locations and surface transport properties at 38 locations. The hydraulic conductivity parameters (Ks, λc) were determined by application of three discharge rates from the drippers and measurements of the resultant steady-state flux densities at the soil surface beneath each dripper. Time domain reflectometry (TDR) was used to measure the bulk electrical conductivity of the soil during steady infiltration of a salt solution. Breakthrough curves (BTCs) for all sites were determined from the TDR measurements. The Ks and λcvalues were found to be lognormally distributed with average values of 31.4 cm h−1 and 6.0 cm, respectively. BTC analysis produced chemical properties, θim/θ, α, and Dm with average values of 0.23, 0.0036 h−1, and 1220 cm2 h−1, respectively. The estimated values of the flow and transport parameters were found to be within the ranges of values reported by previous studies conducted at nearby field locations. The dripper TDR method is a rapid and useful technique for in situ measurements of hydraulic conductivity and solute transport properties. The measurements reported in this study give clear evidence to the occurrence of non-equilibrium water and chemical movement in surface soil. The method allows for quantification of non-equilibrium model parameters and preferential flow. Quantifying the parameters is a necessary step toward determining the influences of surface properties on infiltration, runoff, and vadose zone transport.

Comments

This article published as Al-Jabri, Salem A., Jaehoon Lee, Anju Gaur, Robert Horton, and Dan B. Jaynes. "A dripper-TDR method for in situ determination of hydraulic conductivity and chemical transport properties of surface soils." Advances in water resources 29, no. 2 (2006): 239-249. doi: 10.1016/j.advwatres.2004.12.016. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections