Statistical matching rules and applications for common source identification

dc.contributor.advisor Qiu, Yumou
dc.contributor.advisor Carriquiry, Alicia
dc.contributor.advisor Ommen, Danica
dc.contributor.advisor Hofmann, Heike
dc.contributor.advisor Liu, Peng
dc.contributor.author Lee, Hana
dc.contributor.department Department of Statistics (LAS)
dc.date.accessioned 2024-06-05T22:06:40Z
dc.date.available 2024-06-05T22:06:40Z
dc.date.issued 2024-05
dc.date.updated 2024-06-05T22:06:40Z
dc.description.abstract We propose several statistical matching rules to address common source identification problems in forensic science, where a key question is determining whether two items originated from the same source. A statistical matching rule denotes a statistical decision-making method for source identification problems. In Chapter 2, we derive a parametric matching rule that minimizes a weighted sum of error probabilities under known density functions in the closed-set framework. In Chapter 3, we introduce a method to automatically align two similar footwear impressions and to identify the common source. In Chapter 4, we propose a nonparametric matching rule that leverages statistical classification. We showcase the performance of our proposed methods through numerical simulations or on various datasets in comparison to existing ones.
dc.format.mimetype PDF
dc.identifier.doi https://doi.org/10.31274/td-20240617-95
dc.identifier.orcid 0009-0005-1407-8866
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/1wgeLbKr
dc.language.iso en
dc.language.rfc3066 en
dc.subject.disciplines Statistics en_US
dc.subject.keywords Classification-based matching rule en_US
dc.subject.keywords Common source identification en_US
dc.subject.keywords Density-based matching rule en_US
dc.subject.keywords Shoeprint alignment en_US
dc.subject.keywords Source identification of shoeprints en_US
dc.subject.keywords Statistical matching rules en_US
dc.title Statistical matching rules and applications for common source identification
dc.type dissertation en_US
dc.type.genre dissertation en_US
dspace.entity.type Publication
relation.isOrgUnitOfPublication 264904d9-9e66-4169-8e11-034e537ddbca
thesis.degree.discipline Statistics en_US
thesis.degree.grantor Iowa State University en_US
thesis.degree.level dissertation $
thesis.degree.name Doctor of Philosophy en_US
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Lee_iastate_0097E_21418.pdf
Size:
10.83 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: