Electrochemical detection methods for biologically-active molecules

Thumbnail Image
Date
1988
Authors
Welch, Lawrence
Major Professor
Advisor
Dennis C. Johnson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

Pulsed Amperometric Detection (PAD) has proven to be applicable to the determination of a number of organic compounds. One difficulty has been calibration of PAD for quantitative analysis over a wide concentration range. By pairing PAD in series with Conductivity Detection (CD), a much wider linear calibration range was found for carbohydrates and amino acids. Both compound groups were separated via anion-exchange chromatography and detected at Au electrodes;In an attempt to decrease amino acid detection limits, phenylthiohydantoin and methylthiohydantoin derivatives were examined. PAD was found to be more sensitive to these derivatives than the free amino acids. DC amperometry was also applicable to the thiohydantoin derivatives, with no instability or sensitivity loss with time observed. Detection limits as low as two picomoles were determined. Employment of a commercially available C-18 column allowed separation of nearly all amino acids using gradient elution liquid chromatography;Improvement in detection of underivatized amino acids was made by applying Pulsed Coulometric Detection (PCD) and Indirect Coulometric Adsorption Detection (ICAD). Both could be used following separation on anion-exchange columns. PCD was coupled with a glass reference electrode to allow anion-exchange separation of amino acids using gradient elution, and baseline perturbation during the gradient was minimal. Up to 20 amino acids were separated in less than one hour.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
dissertation
Comments
Rights Statement
Copyright
Fri Jan 01 00:00:00 UTC 1988
Funding
Subject Categories
Supplemental Resources
Source