AC Magnetic Fields in the Vicinity of a Crack Calculated by Analytic and Numerical Methods

Thumbnail Image
Date
1980
Authors
Kahn, A
Spal, R
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

We report calculations of the impedance of a long solenoid which surrounds a cylinder of conducting material containing a radial surface crack. The calculation is accomplished by two independent methods. The first method expresses the field in the interior of the "cracked" cylinder as an infinite series of cylindrical Bessel functions. The coefficients in the series are determined in principle by boundary conditions; the most significant terms are calculated by solving the finite set of equations obtained by truncation of the series. The second method, applicable to any uniform geometric cross-section, obtains the impedance from the normal derivative of the field on the boundary of the conductor. This normal derivative satisfies a (boundary) Fredholm integral equation of the first kind; a solution is obtained by discretizing and solving the resulting linear system of algebraic equations. The impedance is calculated for a wide range of values of the ratios of crack depth-to-radius and radius-to-skin depth. The results are displayed in graphical form giving the fractional charges of the real and imaginary parts of the complex impedance induced by the presence of the crack.

Comments
Description
Keywords
Citation
DOI
Source
Copyright