A Theoretical Study of the Reaction Paths for Cobalt Cation + Propane

Thumbnail Image
Supplemental Files
Date
2000-01-01
Authors
Fedorov, Dmitri
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The triplet potential energy surface for the reaction of cobalt cation with propane has been studied along the two main reaction pathways leading to the formation of (i) hydrogen and propene and (ii) methane and ethene. Effective core potentials for all elements have been used for all calculations. The geometries have been optimized at the complete active space self-consistent field (CASSCF) level of theory, and the final energetics have been refined at the multireference second-order perturbation theory (MRMP2) level with polarization function augmented basis sets. Reasonable agreement with the experimental energetics has been obtained, and the predicted mechanism is consistent with the experimentally determined mechanism of Haynes, Fisher, and Armentrout (J. Phys. Chem. 1996, 100, 18300).

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry A 104 (2000): 2253, doi:10.1021/jp9932766. Copyright 2000 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 2000
Collections