Identifying a Structural Preference in Reduced Rare-Earth Metal Halides by Combining Experimental and Computational Techniques
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Abstract
The structures of two new cubic {TnLa3}Br3 (Tn = Ru, Ir; I4132, Z = 8; Tn = Ru: a = 12.1247(16) Å, V = 1782.4(4) Å3; Tn = Ir: a = 12.1738(19) Å, V = 1804.2(5) Å3) compounds belonging to a family of reduced rare-earth metal halides were determined by single-crystal X-ray diffraction. Interestingly, the isoelectronic compound {RuLa3}I3 crystallizes in the monoclinic modification of the {TnR3}X3 family, while {IrLa3}I3 was found to be isomorphous with cubic {PtPr3}I3. Using electronic structure calculations, a pseudogap was identified at the Fermi level of {IrLa3}Br3 in the new cubic structure. Additionally, the structure attempts to optimize (chemical) bonding as determined through the crystal orbital Hamilton populations (COHP) curves. The Fermi level of the isostructural {RuLa3}Br3 falls below the pseudogap, yet the cubic structure is still formed. In this context, a close inspection of the distinct bond frequencies reveals the subtleness of the structure determining factors.
Comments
Reprinted (adapted) with permission from Inorg. Chem., 2012, 51 (21), pp 11356–11364. Copyright 2012 American Chemical Society.