Crop water and nitrogen productivity in response to long-term diversified crop rotations and management systems

Thumbnail Image
Date
2021-11-01
Authors
Upendra, Sainju
Allen, Brett
Jabro, Jalal
Stevens, William
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lenssen, Andrew
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract
Diversified crop rotation and management strategies may affect crop water and N productivity. We studied the effect of tillage, crop rotation, and management system on pre-plant and postharvest soil water storage, annualized crop yield, water use, and water and N productivity from 2005 to 2010 in the northern Great Plains, USA. Tillage were conventional tillage and no-tillage; crop rotations were continuous spring wheat (Triticum aestivum L.) (CW), spring wheat-pea (Pisum sativum L.) (WP), spring wheat-forage barley (Hordeum vulgare L.)-pea (WBP), and spring wheat-forage barley-corn (Zea mays L.)-pea (WBCP). Managements were traditional (a combination of recommended seeding rate, broadcast N fertilization, early planting, and short stubble height) and alternate (a combination of increased seeding rate, banded N fertilization, late planting, and tall stubble height) systems. Aboveground biomass was 16–85%, preplant soil water 23–118%, postharvest soil water 38–246%, and water productivity 28–61% greater with WBCP than CW in 3 out of 6 yr. Crop water use and biomass N accumulation varied with tillage, crop rotations, and management systems in various years. Grain yield was 26–41% and grain water productivity 25–32% lower with WBP than other crop rotations. Grain N accumulation was 20–52%, grain N productivity 23–60%, and grain and biomass N removal indices 18–153% greater with WP than CW and WBCP, but biomass N productivity was 98–110% lower with CW than other crop rotations. Diversified crop rotation with longer rotation length increased crop yield, soil water storage, and water productivity, but shorter rotation with legume increased grain and biomass N productivity and N removal.
Comments
This article is published as Sainju, Upendra M., Andrew W. Lenssen, Brett L. Allen, Jalal D. Jabro, and William B. Stevens. "Crop water and nitrogen productivity in response to long-term diversified crop rotations and management systems." Agricultural Water Management 257 (2021): 107149. doi:10.1016/j.agwat.2021.107149. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Description
Keywords
Citation
DOI
Copyright
Collections