Large eddy simulation of turbulent channel flow with buoyancy effects

Thumbnail Image
Date
1999
Authors
Lee, Joon
Major Professor
Advisor
Richard H. Pletcher
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Structured grid finite volume formulations have been developed to solve the compressible Navier-Stokes equations for performing large eddy simulation of turbulent flows. These compressible formulations were developed using low Mach number preconditioning. Time marching was done with a coupled strongly implicit scheme. The discretization schemes were second-order accurate central difference and third-order accurate upwind and a comparison was made between two schemes. Validations were performed using turbulent compressible benchmark flows with low heat transfer. The results were compared to direct numerical simulation, experimental, and other large eddy simulation results. The large eddy simulations yielded excellent agreement with the direct numerical simulation and experimental results for incompressible turbulence. For the significant property variations, high heat transfer rate was imposed and the effects of buoyancy on the turbulent structures under stably, and unstably stratified flows were investigated. The effects of buoyancy were larger in the central region of channel where the largest Richardson number occurred. Despite the fact that the relative buoyancy production was small near the boundary walls, effects of buoyancy were observed.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 1999