Azimuthal Anisotropy of pi(0) Production in Au plus Au Collisions at root s(NN)=200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry

Thumbnail Image
Date
2010-09-27
Authors
Adare, Andrew
Hill, John
Kempel, Todd
Lajoie, John
Lebedev, Alexandre
Pei, H.
Rosati, Marzia
Semenov, Alexey
Vale, Carla
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ogilvie, Craig
Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Abstract

We have measured the azimuthal anisotropy of pi(0) production for 1 < p(T) < 18 GeV/c for Au + Au collisions at root s(NN) = 200 GeV. The observed anisotropy shows a gradual decrease for 3 less than or similar to p(T) less than or similar to 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least similar to 10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

Comments

This article is published as Adare, A., S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander et al. "Azimuthal Anisotropy of π 0 Production in Au+ Au Collisions at s N N= 200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry." Physical review letters 105, no. 14 (2010): 142301. DOI:10.1103/PhysRevLett.105.142301. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections