Evolution of far-from-equilibrium nanostructures on Ag(100) surfaces: Protrusions and indentations at extended step edges

dc.contributor.author Evans, James
dc.contributor.author Stoldt, C.
dc.contributor.author Jenks, Cynthia
dc.contributor.author Thiel, Patricia
dc.contributor.author Evans, James
dc.contributor.department Ames National Laboratory
dc.contributor.department Mathematics
dc.contributor.department Chemistry
dc.date 2018-02-13T12:54:28.000
dc.date.accessioned 2020-06-30T01:20:44Z
dc.date.available 2020-06-30T01:20:44Z
dc.date.copyright Sat Jan 01 00:00:00 UTC 2000
dc.date.embargo 2013-06-27
dc.date.issued 2000-02-15
dc.description.abstract <p>Scanning tunneling microscopy is used to monitor the formation and relaxation of nanoprotrusions and nanoindentations at extended step edges following submonolayer deposition of Ag on Ag(100). Deposition of up to about 1/4 ML Ag produces isolated two-dimensional (2D) Ag clusters, which subsequently diffuse, collide, and coalesce with extended step edges, thus forming protrusions. Deposition of larger submonolayer amounts of Ag causes existing step edges to advance across terraces, incorporating 2D islands. The resulting irregular step structure rapidly straightens after terminating deposition, except for a few larger indentations. Relaxation of these far-from-equilibrium step-edge nanoconfigurations is monitored to determine rates for restructuring versus local geometry and feature size. This behavior is analyzed utilizing kinetic Monte Carlo simulations of an atomistic lattice-gas model for relaxation of step-edge nanostructures. In this model, mass transport is mediated by diffusion along the step edge (i.e., “periphery diffusion”). The model consistently fits observed behavior, and allows a detailed characterization of the relaxation process, including assessment of key activation energies.</p>
dc.description.comments <p>This article is from <em>Physical Review B</em> 61, no. 7 (2000): 4910–4925, doi:<a href="http://dx.doi.org/10.1103/PhysRevB.61.4910" target="_blank">10.1103/PhysRevB.61.4910</a>.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/chem_pubs/51/
dc.identifier.articleid 1057
dc.identifier.contextkey 4263191
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath chem_pubs/51
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/14976
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/chem_pubs/51/2000_ThielPA_EvolutionFarFrom.pdf|||Sat Jan 15 00:42:48 UTC 2022
dc.source.uri 10.1103/PhysRevB.61.4910
dc.subject.disciplines Mathematics
dc.subject.disciplines Physical Chemistry
dc.subject.keywords Institute of Physical Research and Technology
dc.title Evolution of far-from-equilibrium nanostructures on Ag(100) surfaces: Protrusions and indentations at extended step edges
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication ccb1c87c-15e0-46f4-bd16-0df802755a5b
relation.isAuthorOfPublication 5e15742e-5866-486b-999c-75a0a6b554e4
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
relation.isOrgUnitOfPublication 42864f6e-7a3d-4be3-8b5a-0ae3c3830a11
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2000_ThielPA_EvolutionFarFrom.pdf
Size:
845.29 KB
Format:
Adobe Portable Document Format
Description:
Collections