Nitrogen Fertilization and Cropping System Impacts on Soil Quality in Midwestern Mollisols

Date
2006-01-01
Authors
Russell, Ann
Laird, David
Russell, Ann
Mallarino, Antonio
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Abstract

High grain production of corn (Zea mays L.) can be maintained by adding inorganic N fertilizer, and also by using crop rotations that include alfalfa (Medicago sativa L.), but the relative impact of these management practices on soil quality is uncertain. We examined the effects on soil of N fertilization rate (0, 90, 180, 270 kg ha−1, corn phase only) in four cropping systems: CC, continuous corn; CS, corn–soybean [Glycine max (L.) Merr.]; CCOA, corn–corn–oat (Avena sativa L.)–alfalfa; and corn–oat–alfalfa–alfalfa (COAA). The 23- and 48-yr-old experimental sites, situated in northeast (Nashua) and north central (Kanawha) Iowa, were in a replicated split-plot design and managed with conventional tillage. At Nashua, we measured available N, potential net N mineralization and microbial biomass C (MBC) throughout the growing season; all were significantly higher in the CCOA system. At both sites, post-harvest N stocks, and soil organic C (SOC) concentrations were significantly higher in systems containing alfalfa. Grain yield was most strongly correlated with soil N properties. At Nashua, N fertilizer additions resulted in significantly lower soil pH (0- to 15-cm depth) and lower exchangeable Ca, Mg, and K and cation exchange capacity (CEC) in the CC and CCOA systems. In an undisturbed prairie reference site for Nashua, low available N, low pH, and high CEC suggested a strong influence of the vegetation on nutrient cycling. In terms of management of soil fertility, inclusion of alfalfa in the rotation differed fundamentally from addition of N fertilizer because high yield was maintained with fewer adverse effects on soil quality.

Description
<p>This article is from <em>Soil Science Society of America Journal</em> 70 (2006): 249, doi:10.2136/sssaj2005.0058.</p>
Keywords
CC, continuous corn CCOA, corn–corn–oats–alfalfa CEC, cation exchange capacity COAA, corn-oats-alfalfa-alfalfa CS, corn-soy MBC, microbial biomass C MSD, minimum significant difference by Tukey's multiple comparison test POC, particulate organic C SOC, soil organic C ρb
Citation
Collections