The kinetics of the reductive decomposition of calcium sulfate with carbon monoxide

Thumbnail Image
Oh, Jae
Major Professor
T. D. Wheelock
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of

The kinetics for the reductive decomposition of calcium sulfate in the presence of carbon monoxide were investigated using thermogravimetric equipment under various conditions of temperature (1050-1200°C) and gas composition (0-7% carbon monoxide, 0-10% sulfur dioxide, and 10-50% carbon dioxide). Pellets reacted at selected conditions were withdrawn from the reaction system at various stages of the reaction and analyzed by X-ray powder diffraction, scanning electron microscopy with electron microprobe, and BET surface area analysis;In contrast to previous views of the reaction, the reductive decomposition of calcium sulfate was found to involve two separate reactions: (1) the reduction of calcium sulfate to calcium oxide and (2) the sulfidation of calcium oxide to calcium sulfide. When the reducing potential, P[subscript]co/P[subscript]co[subscript]2, was lower than 0.25, sulfidation did not appear to occur until the sulfate was almost completely converted to the oxide. The reduction of sulfate was found to take place simultaneously throughout a pellet, indicating negligible resistance to intra-pellet diffusion. On the other hand, sulfidation of the oxide seemed to follow a shrinking unreacted-core model;The kinetics for calcium sulfate reduction were notable for an initial induction period. The extremely slow rate of reaction during this period appeared to be controlled by the rate of nucleation of the calcium oxide reaction product;A mathematical model based on the Erofeev equation was developed to represent both the nucleation kinetics and the intrinsic gas-solid reaction kinetics. The rate of reduction was found to be first order with respect to carbon monoxide concentration and to have an activation energy of 479 kJ/mole. These parameters were compared with the results obtained by the application of the well-known grain model when the induction period was neglected;For the sulfidation of the oxide, a shrinking unreacted-core model of chemical reaction control was used to analyze the experimental data. The reaction was found to be first order with respect to carbon monoxide concentration, with an activation energy of 174 kJ/mole.

Subject Categories
Fri Jan 01 00:00:00 UTC 1988