A counterexample to a conjecture on facial unique-maximal colorings
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Messerschmidt, Kacy | |
dc.contributor.author | Skrekovski, Riste | |
dc.contributor.department | Mathematics | |
dc.date | 2018-10-29T21:16:36.000 | |
dc.date.accessioned | 2020-06-30T06:00:16Z | |
dc.date.available | 2020-06-30T06:00:16Z | |
dc.date.copyright | Sun Jan 01 00:00:00 UTC 2017 | |
dc.date.issued | 2018-03-11 | |
dc.description.abstract | <p>A facial unique-maximum coloring of a plane graph is a proper vertex coloring by natural numbers where on each face α the maximal color appears exactly once on the vertices of α. Fabrici and Göring [4] proved that six colors are enough for any plane graph and conjectured that four colors suffice. This conjecture is a strengthening of the Four Color theorem. Wendland [6] later decreased the upper bound from six to five. In this note, we disprove the conjecture by giving an infinite family of counterexamples. s we conclude that facial unique-maximum chromatic number of the sphere is five.</p> | |
dc.description.comments | <p>This is a manuscript of an article published as Lidický, Bernard, Kacy Messerschmidt, and Riste Škrekovski. "A counterexample to a conjecture on facial unique-maximal colorings." <em>Discrete Applied Mathematics</em> 237 (2018): 123-125. doi: <a href="https://doi.org/10.1016/j.dam.2017.11.037" target="_blank" title="Persistent link using digital object identifier">10.1016/j.dam.2017.11.037</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/190/ | |
dc.identifier.articleid | 1192 | |
dc.identifier.contextkey | 13191411 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/190 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/54580 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/190/2018_Lidicky_CounterexampleConjecture.pdf|||Fri Jan 14 21:51:27 UTC 2022 | |
dc.source.uri | 10.1016/j.dam.2017.11.037 | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.subject.disciplines | Mathematics | |
dc.subject.keywords | facial unique-maximum coloring | |
dc.subject.keywords | plane graph | |
dc.title | A counterexample to a conjecture on facial unique-maximal colorings | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2018_Lidicky_CounterexampleConjecture.pdf
- Size:
- 311.85 KB
- Format:
- Adobe Portable Document Format
- Description: