Combined effects of Sr substitution and pressure on the ground states in CaFe2As2

Thumbnail Image
Knoner, S.
Gati, E.
Kohler, S.
Wolf, B.
Tutsch, U.
Ran, S.
Torikachvili, M. S.
Bud’ko, Sergey
Canfield, Paul
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Ames LaboratoryPhysics and Astronomy

We present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe2As2. Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure P≤2 GPa, were performed on Ca1−xSrxFe2As2 single crystals grown out of Sn flux. We find that by Sr substitution the transition temperature to the magnetic/structural phase is enhanced and therefore a higher pressure is needed to suppress the transition to lowest temperature. In addition, the transition to the collapsed tetragonal phase is found at a pressure, which is distinctly higher than in the pure compound. This implies that the stability ranges of both phases shift on the pressure-axis upon doping, but the latter one with a higher rate. These observations suggest the possibility of separating the two phase lines, which intersect already at elevated temperatures for x=0 and low Sr concentration levels. For x=0.177, we find strong evidence that both phases remain separated down to the lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe2As2. Our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the nonmagnetic collapsed tetragonal phase is detrimental for superconductivity.


This article is published as Knöner, S., E. Gati, S. Köhler, B. Wolf, U. Tutsch, S. Ran, M. S. Torikachvili, S. L. Bud'ko, P. C. Canfield, and M. Lang. "Combined effects of Sr substitution and pressure on the ground states in CaFe 2 As 2." Physical Review B 94, no. 14 (2016): 144513. DOI: 10.1103/PhysRevB.94.144513. Posted with permission.

Subject Categories
Fri Jan 01 00:00:00 UTC 2016