Combined effects of Sr substitution and pressure on the ground states in CaFe2As2

dc.contributor.author Knoner, S.
dc.contributor.author Gati, E.
dc.contributor.author Kohler, S.
dc.contributor.author Canfield, Paul
dc.contributor.author Wolf, B.
dc.contributor.author Tutsch, U.
dc.contributor.author Ran, S.
dc.contributor.author Torikachvili, M. S.
dc.contributor.author Bud’ko, Sergey
dc.contributor.author Canfield, Paul
dc.contributor.author Lang, M.
dc.contributor.department Ames Laboratory
dc.contributor.department Physics and Astronomy
dc.date 2020-01-16T18:31:55.000
dc.date.accessioned 2020-06-30T06:20:42Z
dc.date.available 2020-06-30T06:20:42Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 2016
dc.date.issued 2016-10-01
dc.description.abstract <p>We present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe2As2. Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure P≤2 GPa, were performed on Ca1−xSrxFe2As2 single crystals grown out of Sn flux. We find that by Sr substitution the transition temperature to the magnetic/structural phase is enhanced and therefore a higher pressure is needed to suppress the transition to lowest temperature. In addition, the transition to the collapsed tetragonal phase is found at a pressure, which is distinctly higher than in the pure compound. This implies that the stability ranges of both phases shift on the pressure-axis upon doping, but the latter one with a higher rate. These observations suggest the possibility of separating the two phase lines, which intersect already at elevated temperatures for x=0 and low Sr concentration levels. For x=0.177, we find strong evidence that both phases remain separated down to the lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe2As2. Our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the nonmagnetic collapsed tetragonal phase is detrimental for superconductivity.</p>
dc.description.comments <p>This article is published as Knöner, S., E. Gati, S. Köhler, B. Wolf, U. Tutsch, S. Ran, M. S. Torikachvili, S. L. Bud'ko, P. C. Canfield, and M. Lang. "Combined effects of Sr substitution and pressure on the ground states in CaFe 2 As 2." <em>Physical Review B</em> 94, no. 14 (2016): 144513. DOI: <a href="http://dx.doi.org/10.1103/PhysRevB.94.144513" target="_blank">10.1103/PhysRevB.94.144513</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/physastro_pubs/569/
dc.identifier.articleid 1575
dc.identifier.contextkey 16229820
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath physastro_pubs/569
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/57353
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/physastro_pubs/569/2016_CanfieldPaul_CombinedEffects.pdf|||Sat Jan 15 00:58:22 UTC 2022
dc.source.uri 10.1103/PhysRevB.94.144513
dc.subject.disciplines Condensed Matter Physics
dc.title Combined effects of Sr substitution and pressure on the ground states in CaFe2As2
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication c5a8128b-7d98-4b8f-92d7-b1385e345713
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 4a05cd4d-8749-4cff-96b1-32eca381d930
File
Original bundle
Now showing 1 - 1 of 1
Name:
2016_CanfieldPaul_CombinedEffects.pdf
Size:
990.96 KB
Format:
Adobe Portable Document Format
Description:
Collections