Stabilization of an ambient-pressure collapsed tetragonal phase in CaFe2As2 and tuning of the orthorhombic-antiferromagnetic transition temperature by over 70 K via control of nanoscale precipitates

Thumbnail Image
Ran, Sheng
Bud’ko, Sergey
Pratt, D. K.
Kreyssig, Andreas
Kim, M. G.
Kramer, Matthew
Ryan, D. H.
Rowan-Weetaluktuk, W. N.
Furukawa, Y.
Roy, B.
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence

Related Units

Journal Issue
Is Version Of

We have found a remarkably large response of the transition temperature of CaFe2As2 single crystals grown from excess FeAs to annealing and quenching temperature. Whereas crystals that are annealed at 400ˆC exhibit a first-order phase transition from a high-temperature tetragonal to a low-temperature orthorhombic and antiferromagnetic state near 170 K, crystals that have been quenched from 960ˆC exhibit a transition from a high-temperature tetragonal phase to a low-temperature, nonmagnetic, collapsed tetragonal phase below 100 K. By use of temperature-dependent electrical resistivity, magnetic susceptibility, x-ray diffraction, Mössbauer spectroscopy, and nuclear magnetic resonance measurements we have been able to demonstrate that the transition temperature can be reduced in a monotonic fashion by varying the annealing or quenching temperature from 400ˆ to 850ˆC with the low-temperature state remaining antiferromagnetic for transition temperatures larger than 100 K and becoming collapsed tetragonal, nonmagnetic for transition temperatures below 90 K. This suppression of the orthorhombic-antiferromagnetic phase transition and its ultimate replacement with the collapsed tetragonal, nonmagnetic phase is similar to what has been observed for CaFe2As2 under hydrostatic pressure. Transmission electron microscopy studies indicate that there is a temperature-dependent width of formation of CaFe2As2 with a decreasing amount of excess Fe and As being soluble in the single crystal at lower annealing temperatures. For samples quenched from 960ˆC there is a fine (of order 10 nm) semiuniform distribution of precipitate that can be associated with an average strain field, whereas for samples annealed at 400ˆC the excess Fe and As form mesoscopic grains that induce little strain throughout the CaFe2As2 lattice.


This article is published as Ran, S., S. L. Bud’Ko, D. K. Pratt, A. Kreyssig, M. G. Kim, M. J. Kramer, D. H. Ryan, W. N. Rowan-Weetaluktuk, Y. Furukawa, B. Roy, A. I. Goldman, and P. C. Canfield. "Stabilization of an ambient-pressure collapsed tetragonal phase in CaFe 2 As 2 and tuning of the orthorhombic-antiferromagnetic transition temperature by over 70 K via control of nanoscale precipitates." Physical Review B 83, no. 14 (2011): 144517. DOI: 10.1103/PhysRevB.83.144517. Posted with permission.

Sat Jan 01 00:00:00 UTC 2011