How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain?

Thumbnail Image
Date
2024-01-08
Authors
Davila, Kaitlyn M. Sarlo
Nelli, Rahul K.
Phadke, Kruttika S.
Ruden, Rachel M.
Sang, Yongming
Bellaire, Bryan H.
Miller, Laura C.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
American Society for Microbiology
Authors
Person
Giménez-Lirola, Luis
Associate Professor
Research Projects
Journal Issue
Is Version Of
Versions
Series
Department
Veterinary Diagnostic and Production Animal MedicineVeterinary Microbiology and Preventive Medicine
Abstract
The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.
Comments
This article is published as Sarlo Davila, Kaitlyn M., Rahul K. Nelli, Kruttika S. Phadke, Rachel M. Ruden, Yongming Sang, Bryan H. Bellaire, Luis G. Gimenez-Lirola, and Laura C. Miller. "How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain?." Microbiology Spectrum (2024): e02524-23. doi: https://doi.org/10.1128/spectrum.02524-23. Copyright © 2024 Sarlo Davila et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Description
Keywords
Citation
DOI
Copyright
Collections