Small punch test simulation of laminated magnesium alloy composite with aluminum/silicon carbide pattern-reinforcement

dc.contributor.advisor Gap-Yong Kim
dc.contributor.author Liu, Miao
dc.contributor.department Mechanical Engineering
dc.date 2018-08-11T11:09:59.000
dc.date.accessioned 2020-06-30T03:00:41Z
dc.date.available 2020-06-30T03:00:41Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 2016
dc.date.embargo 2001-01-01
dc.date.issued 2016-01-01
dc.description.abstract <p>Metal matrix composites (MMCs) have been widely used in various industries including aerospace, automotive, transportation, etc. While many types of MMCs have been studied and developed, including reinforcement phases of mono filaments, short/long fibers, and particles, their arrangement within the matrix has been rather simple. In this study, a finite element simulation tool has been used to study laminate composites with complex configurations. A finite element analysis has been performed to understand the strengthening effect of pattern-reinforced composite structure using a small punch test. It was found that the pattern reinforcement helped to distribute stress and strain during deformation. This resulted in the strength increase of 40% when compared with a uniform alternating layer-reinforced composite. Furthermore, composites with three different pattern sizes of 2 µm, 20 µm and 50 µm with the same reinforcement loading were compared. The smallest pattern showed the highest strength compared with larger patterns by 30% and 60%. Furthermore, the influence of elastic modulus, yield strength, ultimate strength, and fracture strain on the four deformation stages of the small punch test has been analyzed. Based on the analysis, a modified energy dissipation equation was developed to compensate for variations originating from the sheet thickness and the test ball size.</p> <p>This study helps to explain the strengthening effect from a pattern-reinforced laminate composite in comparison with the uniform alternating layer-reinforced structure. It demonstrated potential ways to alter or tailor mechanical properties of laminate composites and to further optimize the configuration of custom designed laminate composites.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/etd/14995/
dc.identifier.articleid 6002
dc.identifier.contextkey 8880995
dc.identifier.doi https://doi.org/10.31274/etd-180810-4600
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath etd/14995
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/29179
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/etd/14995/Liu_iastate_0097M_15531.pdf|||Fri Jan 14 20:29:44 UTC 2022
dc.subject.disciplines Mechanical Engineering
dc.subject.keywords Mechanical Engineering
dc.title Small punch test simulation of laminated magnesium alloy composite with aluminum/silicon carbide pattern-reinforcement
dc.type article
dc.type.genre thesis
dspace.entity.type Publication
relation.isOrgUnitOfPublication 6d38ab0f-8cc2-4ad3-90b1-67a60c5a6f59
thesis.degree.discipline Mechanical Engineering
thesis.degree.level thesis
thesis.degree.name Master of Science
File
Original bundle
Now showing 1 - 1 of 1
Name:
Liu_iastate_0097M_15531.pdf
Size:
3.36 MB
Format:
Adobe Portable Document Format
Description: