Electromagnetic wave absorbing properties and hyperfine interactions of Fe-Cu-Nb-Si-B nanocomposites
Date
Authors
Hadimani, Ravi
Wei, Guo
Yan-Hui, Wu
Min, Liu
Hadimani, M. Ravi
Long-Jiang, Deng
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Abstract
The Fe–Cu–Nb–Si–B alloy nanocomposite containing two ferromagnetic phases (amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy (HRTEM) images show the coexistence of these two phases. It is found that Fe–Si nanograins are surrounded by the retained amorphous ferromagnetic phase. Mossbauer spectroscopy measurements show that the nanophase is the D03-type Fe– Si phase, which is employed to find the atomic fractions of resonant 57Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe–Cu–Nb–Si–B nanocomposite are measured in the frequency range of 0.5 GHz– 10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than −10 dB in a frequency band of 1.93 GHz–3.20 GHz.
Comments
This is a manuscript of an article from Chinese Physics B 23 (2014): 083301, doi: 10.1088/1674- 1056/23/8/083301. Posted with permission.