## Note on the Jordan form of an irreducible eventually nonnegative matrix

2015-06-01
Tam, Bit-Shun
Wilson, Ulrica
Person
Hogben, Leslie
Associate Dean
##### Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

• Department of Electrical Engineering (1909-1985)
• Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
##### Abstract

A square complex matrix A is eventually nonnegative if there exists a positive integer k(0) such that for all k >= k(0), A(k) >= 0; A is strongly eventually nonnegative if it is eventually nonnegative and has an irreducible nonnegative power. It is proved that a collection of elementary Jordan blocks is a Frobenius Jordan multiset with cyclic index r if and only if it is the multiset of elementary Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r. A positive answer to an open question and a counterexample to a conjecture raised by Zaslavsky and Tam are given. It is also shown that for a square complex matrix A with index at most one, A is irreducible and eventually nonnegative if and only if A is strongly eventually nonnegative.