Ultrafast manipulation of topologically enhanced surface transport driven by mid-infrared and terahertz pulses in Bi2Se3

Thumbnail Image
Date
2019-02-05
Authors
Luo, Liang
Yang, Xu
Liu, X.
Liu, Zhiyan
Vaswani, Chirag
Cheng, Di
Mootz, M.
Zhao, Xin
Yao, Yongxin
Wang, Cai-Zhuang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

Topology-protected surface transport of ultimate thinness in three-dimensional topological insulators (TIs) is breaking new ground in quantum science and technology. Yet a challenge remains on how to disentangle and selectively control surface helical spin transport from the bulk contribution. Here we use the mid-infrared and terahertz (THz) photoexcitation of exclusive intraband transitions to enable ultrafast manipulation of surface THz conductivity in Bi2Se3. The unique, transient electronic state is characterized by frequency-dependent carrier relaxations that directly distinguish the faster surface channel than the bulk with no complication from interband excitations or need for reduced bulk doping. We determine the topological enhancement ratio between bulk and surface scattering rates, i.e., γBS/γSS ~3.80 in equilibrium. The ultra-broadband, wavelength-selective pumping may be applied to emerging topological semimetals for separation and control of the protected transport connected with the Weyl nodes from other bulk bands.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections