Data driven complexity reduction of power system production cost models

Thumbnail Image
Date
2020-01-01
Authors
Roy, Soummya
Major Professor
Advisor
James McCalley
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

With increasing amounts of intermittent renewable energy sources in today's grid, traditional long term capacity expansion planning models require an external production cost model to ensure that the flexibility requirements are met. However running a full year Production Cost Model is computationally intensive involving billions of constraints and variables. An efficient way to solve this problem is by selecting the best possible set of representative days for a whole year that best represents the load, wind and solar conditions for the whole year. Several techniques and metrics to select and validate the choice of representative days have been proposed in prior literature. However, most of them are heuristic in nature and lack a mathematical or statistical validation. In this work we try and develop a formal algorithm to select the representative periods by reducing the dimension of the netload data and using statistical metrics to find the optimal number of clusters. We then validate the choice of days chosen by external metrics and also the results from running the Production Cost model by scaling up the results of the representative days implementation. We observe and analyse the differences in the results.

Comments
Description
Keywords
Citation
Source
Copyright
Sat Aug 01 00:00:00 UTC 2020