Minimum rank of skew-symmetric matrices described by a graph
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Abstract
The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We apply techniques from the minimum (symmetric) rank problem and from skew-symmetric matrices to obtain results about the minimum skew rank problem.
Comments
This is a manuscript of an article from Linear Algebra and its Applications 432 (2010): 2457, doi:10.1016/j.laa.2009.10.001. Posted with permission.