The development and utilization of an in vivo RNA interference protocol to elucidate gene functions and identify potential drug targets in the filarial nematode Brugia malayi

dc.contributor.advisor Michael J. Kimber
dc.contributor.author Song, Chuanzhe
dc.contributor.department Biomedical Sciences
dc.date 2018-08-11T09:57:42.000
dc.date.accessioned 2020-06-30T02:27:48Z
dc.date.available 2020-06-30T02:27:48Z
dc.date.copyright Sat Jan 01 00:00:00 UTC 2011
dc.date.embargo 2013-06-05
dc.date.issued 2011-01-01
dc.description.abstract <p>Since its first characterization in 1998 in the free-living nematode Caenorhabditis elegans, RNA interference has been considered a powerful reverse genetics tool to investigate nematode biology. But to date, current RNAi protocols for parasitic nematodes have proven unreliable and inconsistent.</p> <p>We established an alternative RNAi protocol targeting the filarial nematode Brugia malayi in-host whereby the parasites are exposed to RNAi triggers as they develop within the intermediate host, the mosquito Aedes aegypti. Using this in vivo RNAi protocol, we successfully quantified the suppression of five B. malayi genes associated with known or putative drug targets. Administration of a random exogenous dsRNA resulted in no phenotypic abnormalities, demonstrating the specificity of the in vivo RNAi protocol.</p> <p>In vivo RNAi experiments revealed that the cathepsin L-like cysteine protease Bm-cpl-1 plays a role in worm migration, survival and overall health. Suppression of Bm-cpl-1 resulted in inhibited worm motility and capacity to properly navigate to the head for transmission thus abolishing the transmission potential of the worm. Bm-cpl-1 suppression also affected worm development as evident by a reduction in worm length post Bm-cpl-1 suppression.</p> <p>The potential of the in vivo RNAi protocol to aid drug development was further validated using four known or putative drug targets of interest: y-tubulin (Bm-tub-1), a glutamate-gated chloride channel alpha subunit (Bm-GluCl-y3A), a G protein-coupled acetylcholine receptor (Bm-gar-2), and a FMRFamide-like peptide (Bm-flp-21). Suppression of these genes resulted in a combination of decreased motility, worm survival, migration, and worm physiological abnormalities verifying or validating each of the four drug targets potential for anthelmintic drug development.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/etd/10346/
dc.identifier.articleid 1368
dc.identifier.contextkey 2798737
dc.identifier.doi https://doi.org/10.31274/etd-180810-2673
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath etd/10346
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/24559
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/etd/10346/Song_iastate_0097E_12324.pdf|||Fri Jan 14 18:19:07 UTC 2022
dc.subject.disciplines Medical Sciences
dc.subject.keywords Brugia
dc.subject.keywords Nematode
dc.subject.keywords Parasite
dc.subject.keywords RNAi
dc.title The development and utilization of an in vivo RNA interference protocol to elucidate gene functions and identify potential drug targets in the filarial nematode Brugia malayi
dc.type article
dc.type.genre dissertation
dspace.entity.type Publication
relation.isOrgUnitOfPublication 184db3f2-d93f-4571-8ad7-07c8a9e6a5c9
thesis.degree.level dissertation
thesis.degree.name Doctor of Philosophy
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Song_iastate_0097E_12324.pdf
Size:
3.66 MB
Format:
Adobe Portable Document Format
Description: