Recent Developments in Modeling Eddy-Current Probe-Flaw Interactions

Thumbnail Image
Date
1996
Authors
Sabbagh, Harold
Murphy, R. Kim
Woo, Lai Wan
Sabbagh, Elias
Krzywosz, Kenji
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

A number of industries have been traditional users of eddy-current technology in nondestructive evaluation (NDE). The traditional mode of eddy-current inspection has been ‘monostatic,’ in which a single probe is used as both a ‘transmitter’ and ‘receiver’ Research in these industries now indicates the value of using ‘bistatic,’ or even ‘multistatic’ probe configurations, in which a single probe is used as a transmitter, and one or more probes are used as receivers. The probes may be either air core, or ferrite core, or perhaps a combination. Some examples of bistatic configurations are the split-core differential probe, and remote-field probes. The industry is turning to computer codes that are based on sophisticated computational electromagnetics algorithms in order to design these probes, and to interpret the signals that arise from the interaction of these probes with flaws.

Comments
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1996