Architecture and debugging of digital signal processing software in a high frequency MIL-STD-188-110A single tone receiver

dc.contributor.advisor Zhengdao Wang
dc.contributor.author Provolt, Janette
dc.contributor.department Electrical and Computer Engineering
dc.date 2018-08-11T10:16:31.000
dc.date.accessioned 2020-06-30T02:31:37Z
dc.date.available 2020-06-30T02:31:37Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2008
dc.date.embargo 2013-06-05
dc.date.issued 2008-01-01
dc.description.abstract <p>The MIL-STD-188-110A Single Tone high frequency modem is used by the United States military everyday as a beyond line-of-sight radio. Typically, beyond line-of-sight military radios use satellites for reflection. Satellite time is in high demand, and since there are a finite number of satellites in orbit, it makes over-the-air time expensive. The Single Tone high frequency modem offers a reliable alternative by using the ionosphere, rather than a satellite, for reflection. The ionosphere adds unique channel effects, causing the signal processing software to be more complex and harder to debug than radios which use satellites.</p> <p>Before being placed into production, the MIL-STD-188-110A Single Tone high frequency modem is placed under comprehensive performance tests. These tests are meant to fully verify all aspects of the software and to impose all possible channel effects such as additive white Gaussian noise, doppler shift, terminal clock differences, frequency and time dispersion. When a test fails, debugging the software can be tedious and time consuming. The two major steps to quick and successful debugging are understanding and isolation. The engineer must understand the channel model and receive path in order to correlate a test failure with a specific section of software. After the channel model and receive path are understood, timing patterns of bit errors and test failures caused by individual channel effects help the engineer isolate the software defect. This thesis compiles the necessary information to understand a generalized receive path and provides a framework for isolating a software defect.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/etd/10873/
dc.identifier.articleid 1888
dc.identifier.contextkey 2807086
dc.identifier.doi https://doi.org/10.31274/etd-180810-1806
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath etd/10873
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/25079
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/etd/10873/Provolt_iastate_0097M_10038.pdf|||Fri Jan 14 18:29:44 UTC 2022
dc.subject.disciplines Electrical and Computer Engineering
dc.subject.keywords Communications
dc.subject.keywords Digital Signal Processing
dc.subject.keywords MIL-STD-188-110A
dc.title Architecture and debugging of digital signal processing software in a high frequency MIL-STD-188-110A single tone receiver
dc.type article
dc.type.genre thesis
dspace.entity.type Publication
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
thesis.degree.level thesis
thesis.degree.name Master of Science
File
Original bundle
Now showing 1 - 1 of 1
Name:
Provolt_iastate_0097M_10038.pdf
Size:
802.96 KB
Format:
Adobe Portable Document Format
Description: