The isometry degree of a computable copy of ℓp McNicholl, Timothy McNicholl, Timothy Stull, Donald
dc.contributor.department Mathematics 2020-10-22T18:43:40.000 2021-02-26T02:54:46Z 2021-02-26T02:54:46Z Tue Jan 01 00:00:00 UTC 2019 2019-06-17
dc.description.abstract <p>When p is a computable real so that p⩾1, we define the isometry degree of a computable presentation of ℓp to be the least powerful Turing degree d by which it is d-computably isometrically isomorphic to the standard presentation of ℓp. We show that this degree always exists and that when p≠2 these degrees are precisely the c.e. degrees.</p>
dc.description.comments <p>This is a manuscript of an article published as McNicholl, Timothy H., and Donald M. Stull. "The isometry degree of a computable copy of ℓp." <em>Computability</em> 8, no. 2 (2019): 179-189.The final publication is available at IOS Press through <a href="" target="_blank"></a>. Posted with permssion.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1268
dc.identifier.contextkey 19914846
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/260
dc.language.iso en
dc.source.bitstream archive/|||Fri Jan 14 23:01:57 UTC 2022
dc.source.uri 10.3233/COM-180214
dc.subject.disciplines Mathematics
dc.subject.disciplines Numerical Analysis and Computation
dc.title The isometry degree of a computable copy of ℓp
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 52624580-cc7d-4600-800e-c84af32578ba
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
Original bundle
Now showing 1 - 1 of 1
337.55 KB
Adobe Portable Document Format