Implementation of a Blind Quality Control Program in Blood Alcohol Analysis

Thumbnail Image
Moral, Jackeline
Hundel, Callan
Lee, Dayong
Neuman, Maddisen
Grimaldi, Aimee
Cuellar, Maria
Stout, Peter
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Center for Statistics and Applications in Forensic Evidence
The Center for Statistics and Applications in Forensic Evidence (CSAFE) carries out research on the scientific foundations of forensic methods, develops novel statistical methods and transfers knowledge and technological innovations to the forensic science community. We collaborate with more than 80 researchers and across six universities to drive solutions to support our forensic community partners with accessible tools, open-source databases and educational opportunities.
Journal Issue
Is Version Of
Center for Statistics and Applications in Forensic Evidence

Declared proficiency tests are limited in their use for testing the performance of the entire system, because analysts are aware that they are being tested. A blind quality control (BQC) is intended to appear as a real case to the analyst to remove any intentional or subconscious bias. A BQC program allows a real-time assessment of the laboratory’s policies and procedures and monitors reliability of casework. In September 2015, the Houston Forensic Science Center (HFSC) began a BQC program in blood alcohol analysis. Between September 2015 and July 2018, HFSC submitted 317 blind cases: 89 negative samples and 228 positive samples at five target concentrations (0.08, 0.15, 0.16, 0.20 and 0.25 g/100 mL; theoretical targets). These blood samples were analyzed by a headspace gas chromatograph interfaced with dual-flame ionization detectors (HS-GC-FID). All negative samples produced `no ethanol detected’ results. The mean (range) of reported blood alcohol concentrations (BACs) for the aforementioned target concentrations was 0.075 (0.073–0.078), 0.144 (0.140–0.148), 0.157 (0.155–0.160), 0.195 (0.192–0.200) and 0.249 (0.242–0.258) g/100 mL, respectively. The average BAC percent differences from the target for the positive blind cases ranged from −0.4 to −6.3%, within our uncertainty of measurement (8.95–9.18%). The rate of alcohol evaporation/degradation was determined negligible. A multiple linear regression analysis was performed to compare the % difference in BAC among five target concentrations, eight analysts, three HS-GC-FID instruments and two pipettes. The variables other than target concentrations showed no significant difference (P > 0.2). While the 0.08 g/100 mL target showed a significantly larger % difference than higher target concentrations (0.15–0.25 g/100 mL), the % differences among the higher targets were not concentration-dependent. Despite difficulties like gaining buy-in from stakeholders and mimicking evidence samples, the implementation of a BQC program has improved processes, shown methods are reliable and added confidence to staff’s testimony in court.


This is a manuscript of an article published as Moral, Jackeline, Callan Hundl, Dayong Lee, Maddisen Neuman, Aimee Grimaldi, Maria Cuellar, and Peter Stout. "Implementation of a blind quality control program in blood alcohol analysis." Journal of analytical toxicology 43, no. 8 (2019): 630-636. Posted with permission of CSAFE.

Tue Jan 01 00:00:00 UTC 2019