Probability recurrences on simple graphs in a forest building process Alameda, Joseph
dc.contributor.department Mathematics
dc.contributor.majorProfessor Steve Butler 2019-09-19T05:54:13.000 2020-06-30T01:32:31Z 2020-06-30T01:32:31Z Tue Jan 01 00:00:00 UTC 2019 2019-01-01
dc.description.abstract <p>Consider the following process on a simple graph with no isolated vertices: Randomly order the edges and remove an edge if and only if the edge is incident to two vertices already incident to some preceding edge. This process results in a spanning forest of the graph.</p> <p>Recurrences are given for the process for multiple families of graphs, and the probability of obtaining $k$ components in the above process is given by a new method for the Fan graph $F_{n-2,2}$. An approach to proving a previously published conjecture is also discussed.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1171
dc.identifier.contextkey 14233929
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath creativecomponents/125
dc.source.bitstream archive/|||Fri Jan 14 19:23:17 UTC 2022
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.subject.keywords graphs
dc.subject.keywords forests
dc.subject.keywords trees
dc.subject.keywords recurrence
dc.subject.keywords probability
dc.title Probability recurrences on simple graphs in a forest building process
dc.type article
dc.type.genre creativecomponent
dspace.entity.type Publication
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48 Mathematics creativecomponent
Original bundle
Now showing 1 - 1 of 1
368.39 KB
Adobe Portable Document Format