Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials
Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials
dc.contributor.author | Taheri, Hossein | |
dc.contributor.author | Koester, Lucas | |
dc.contributor.author | Bigelow, Timothy | |
dc.contributor.author | Bond, Leonard | |
dc.contributor.author | Bond, Leonard | |
dc.contributor.department | Aerospace Engineering | |
dc.contributor.department | Mechanical Engineering | |
dc.contributor.department | Electrical and Computer Engineering | |
dc.contributor.department | Electrical and Computer Engineering | |
dc.date | 2020-07-03T04:20:22.000 | |
dc.date.accessioned | 2020-07-06T21:25:26Z | |
dc.date.available | 2020-07-06T21:25:26Z | |
dc.date.copyright | Mon Jan 01 00:00:00 UTC 2018 | |
dc.date.embargo | 2019-01-01 | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | <p>Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.</p> | |
dc.description.comments | <p>This proceeding may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This proceeding appeared in Taheri, Hossein, L. Koester, T. Bigelow, and Leonard J. Bond. "Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials." <em>AIP Conference Proceedings</em> 1949, no. 1 (2018): 020011. DOI: <a href="https://doi.org/10.1063/1.5031508" target="_blank">10.1063/1.5031508</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/aere_conf/56/ | |
dc.identifier.articleid | 1056 | |
dc.identifier.contextkey | 18346245 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | aere_conf/56 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/91501 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/aere_conf/56/2018_BondLeonard_FiniteElement.pdf|||Sat Jan 15 00:57:12 UTC 2022 | |
dc.source.uri | 10.1063/1.5031508 | |
dc.subject.disciplines | Manufacturing | |
dc.subject.disciplines | Structural Materials | |
dc.subject.keywords | Finite-element analysis | |
dc.subject.keywords | Ultrasound | |
dc.subject.keywords | Numerical methods | |
dc.subject.keywords | Sintering | |
dc.subject.keywords | Ultrasonics | |
dc.subject.keywords | Acoustic transducers | |
dc.subject.keywords | Quality assurance | |
dc.title | Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials | |
dc.type | article | |
dc.type.genre | conference | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4ce205f6-422e-4b1c-a216-e7df3565ecf7 | |
relation.isOrgUnitOfPublication | 047b23ca-7bd7-4194-b084-c4181d33d95d | |
relation.isOrgUnitOfPublication | 6d38ab0f-8cc2-4ad3-90b1-67a60c5a6f59 | |
relation.isOrgUnitOfPublication | a75a044c-d11e-44cd-af4f-dab1d83339ff |
File
Original bundle
1 - 1 of 1
- Name:
- 2018_BondLeonard_FiniteElement.pdf
- Size:
- 1.07 MB
- Format:
- Adobe Portable Document Format
- Description: