Effects of Subsurface Drainage Systems on Water and Nitrogen Footprints Simulated with RZWQM2

dc.contributor.author Craft, Kristina
dc.contributor.author Helmers, Matthew
dc.contributor.author Helmers, Matthew
dc.contributor.author Malone, Robert
dc.contributor.author Pederson, Carl
dc.contributor.author Schott, Linda
dc.contributor.department Agricultural and Biosystems Engineering
dc.date 2018-03-13T23:17:02.000
dc.date.accessioned 2020-06-29T22:43:24Z
dc.date.available 2020-06-29T22:43:24Z
dc.date.issued 2018-01-01
dc.description.abstract <p>Developing drainage water management (DWM) systems in the Midwest to reduce nitrogen (N) transport to the northern Gulf of Mexico hypoxic zone requires understanding of the long-term performance of these systems. Few studies have evaluated long-term impacts of DWM, and the simulation of controlled drainage (CD) with the Root Zone Water Quality Model (RZWQM) is limited, while shallow drainage (SD) has not been examined. We tested RZWQM using nine years (2007-2015) of field data from southeast Iowa for CD, SD, conventional drainage (DD), and undrained (ND) systems and simulated the long-term (1971-2015) impacts. RZWQM accurately simulated N loss in subsurface drainage, and the simulations agreed with field data that CD and SD substantially reduced N loss to drainage. As indicated by the field data, the SD N concentration was predicted to be greater than DD and CD, likely due to reduced time of travel to shallower drains. The long-term simulations show that CD and SD reduced annual N lost via tile drainage by 26% and 40%, respectively. Annual reductions in N lost via tile drainage ranged from 28% in the driest years to 22% in the wettest years for CD and from 56% in the driest years to 35% in the wettest years for SD. Considering spring N loading for the purpose of addressing hypoxia in the Gulf of Mexico, CD was found to be less effective than SD, and in many years CD exported more N in the spring than DD. Spring N loading (April through June) was indicated by the EPA Science Advisory Board to have the greatest impact on hypoxia in the northern Gulf of Mexico. Therefore, improvement of CD systems within the months of April through June to reduce N loss via drainage across the upper Midwest landscape may be required. Limited research in the upper Midwest has addressed spring N loading under controlled drainage systems (CD). This research will help model developers, model users, and agricultural scientists more clearly understand N transport under different systems, including CD, SD, and ND, which will aid in developing the design and management of drainage systems to reduce N transport from tile-drained agriculture to surface waters.</p>
dc.description.comments <p>This article is published as Craft, Kristina J., Matthew J. Helmers, Robert W. Malone, Carl H. Pederson, and Linda R. Schott. "Effects of subsurface drainage systems on water and nitrogen footprints simulated with RZWQM2." <em>Transactions of the ASABE </em>(2018): 245-261. DOI: <a href="http://dx.doi.org/10.13031/trans.12300" target="_blank">10.13031/trans.12300</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/abe_eng_pubs/883/
dc.identifier.articleid 2163
dc.identifier.contextkey 11766011
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath abe_eng_pubs/883
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/1694
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/abe_eng_pubs/883/2018_Helmers_EffectsSubsurface.pdf|||Sat Jan 15 02:17:42 UTC 2022
dc.source.uri 10.13031/trans.12300
dc.subject.disciplines Agriculture
dc.subject.disciplines Bioresource and Agricultural Engineering
dc.subject.disciplines Environmental Monitoring
dc.subject.disciplines Natural Resources Management and Policy
dc.subject.disciplines Water Resource Management
dc.subject.keywords Agricultural simulation model
dc.subject.keywords Drainage water management
dc.subject.keywords Nonpoint-source pollution
dc.subject.keywords Northern Gulf of Mexico hypoxic zone
dc.subject.keywords Nutrient reduction
dc.subject.keywords Subsurface drainage
dc.title Effects of Subsurface Drainage Systems on Water and Nitrogen Footprints Simulated with RZWQM2
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 26a812e6-e6de-44ff-b7ea-d2459ae1903c
relation.isOrgUnitOfPublication 8eb24241-0d92-4baf-ae75-08f716d30801
File
Original bundle
Now showing 1 - 1 of 1
Name:
2018_Helmers_EffectsSubsurface.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:
Collections