Parametric modeling for simulation based hypersonic vehicle design

Date
2015-01-01
Authors
Lee, Alexander
Major Professor
Advisor
Thomas P. Gielda
Richard W. Wlezien
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Aerospace Engineering
Organizational Unit
Journal Issue
Series
Department
Aerospace Engineering
Abstract

The conceptual design stage offers the most opportunity for innovation and the capability to reveal costly design errors early. Integrating high fidelity design and simulation tools into the conceptual design stage enables engineers to develop design variations quickly and affordably. This work focuses primarily on the development and utilization of parametric modeling methods as they apply to a simulation based design process. It will also address the impacts to conceptual design development time. A blended wing-body (BWB) hypersonic wave rider demonstrates how state-of-the-art solid modeling techniques can be coupled to high fidelity CFD analysis codes to perform top down design. Performance trends are identified for several trade study variations which represent a single iteration through the simulation based design process. Performance metrics are based on interpretations from higher level customer, regulatory, business, and other requirements. The process of cascading these requirements down to the component level is the definition of top-down-design. This bidirectional tracing of requirements allows vehicle development to progress in a manner such that any change of the vehicle can be assessed in terms of the overarching requirements.

Comments
Description
Keywords
Citation
Source