Applying Imidacloprid Via a Precision Banding System to Control Striped Cucumber Beetle (Coleoptera: Chrysomelidae) in Cucurbits

Thumbnail Image
Date
2009-12-01
Authors
Jasinski, J.
Ozkan, E.
Precheur, R.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Darr, Matthew
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The striped cucumber beetle, Acalymma vittatum (F.) (Coleoptera: Chrysomelidae), is a key pest of cucurbit crops throughout its range. A novel precision band applicator was designed to inject a solid stream of imidacloprid solution in-furrow directly over the seed during planting to reduce beetle leaf feeding on pumpkin, zucchini, and cucumber crops. In 2004 and 2005, bioassays at the cotyledon through fifth leaf were conducted on striped cucumber beetles using seedling leaf tissue grown from seeds treated using both continuous and precision banded in-furrow imidacloprid solution applications. In 2004, 80% of bioassay trials had treatments with beetle mortality significantly higher than the check, whereas 70% of the bioassay trials showed no significant difference in mortality between continuous in-furrow and precision banded treatments. In 2005, 79% of bioassay trials had treatments with beetle mortality significantly higher than the check, whereas 100% of the bioassays showed no significant difference in beetle mortality between continuous in-furrow and precision banded treatments at the same insecticide rate. The environmental savings of precision banded treatments compared with continuous in-furrow treatment reduced imidacloprid up to 84.5% on a per hectare basis for all cucurbits tested in 2004 and 2005, translating into an economic savings up to 030215/ha. In separate bioassay trials conducted in 2005 on pumpkin, where insecticide band length and injection volume were manipulated independently, several treatments had significantly higher beetle mortality than the check. There was a trend of increased beetle mortality in treatments using shorter band lengths combined with higher insecticide solution volumes.

Comments

This article is from Journal of Economic Entomology 102, no. 6 (2009): 2255–2264, doi:10.1603/029.102.0630.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2009
Collections