Soil total carbon and nitrogen and crop yields after eight years of tillage, crop rotation, and cultural practice

Sainju, Upendra
Lenssen, Andrew
Lenssen, Andrew
Allen, Brett
Stevens, William
Jabro, Jalal
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Journal Issue

Information on the long-term effect of management practices on soil C and N stocks is lacking. An experiment was conducted from 2004 to 2011 in the northern Great Plains, USA to examine the effects of tillage, crop rotation, and cultural practice on annualized crop residue (stems + leaves) returned to the soil and grain yield, and soil total C (STC) and total N (STN) stocks at the 0–120 cm depth. Tillage practices were no-tillage (NT) and conventional tillage (CT) and crop rotations were continuous spring wheat (Triticum aestivum L.) (CW), spring wheat-pea (Pisum sativum L.) (W-P), spring wheat-barley (Hordeum vulgaris L.) hay-pea (W-B-P), and spring wheat-barley hay-corn (Zea mays L.)-pea (W-B-C-P). Cultural practices were traditional (conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height) and improved (variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height). Crop residue and grain yield were greater with CW and W-P than W-B-P and grain yield was greater with the traditional than the improved practice. The STC at 10–20 and 90–120 cm was greater with CW or W-P than other crop rotations in CT and greater with CW than W-B-P in NT. The STN at 20–40 cm was greater with W-P than CW and W-B-P in CT. With NT and the improved cultural practice, STN at 0–5, 5–10, 20–40, and 60–90 cm was greater with W-P and W-B-C-P than other crop rotations. The STN at 0–10 cm correlated with annualized crop residue and grain yield (r = 0.94–0.97, P ≤ 0.05). Increased crop residue returned to the soil increased soil C stock with CW and W-P and N stock with W-P, but removal of aboveground crop biomass for hay decreased stocks with W-B-P. Increased soil N stock had a beneficial effect on crop grain yield.


This article is published as Sainju, Upendra M., Andrew W. Lenssen, Brett L. Allen, William B. Stevens, and Jalal D. Jabro. "Soil total carbon and nitrogen and crop yields after eight years of tillage, crop rotation, and cultural practice." Heliyon 3, no. 12 (2017): e00481. doi: 10.1016/j.heliyon.2017.e00481.