Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet

Thumbnail Image
Date
2022-03-23
Authors
Kuthanazhi, Brinda
Ahn, Junyeong
Wang, Lin-Lin
O'Leary, Evan
Lee, Kyungchan
Eaton, Andrew
Fedorov, Alexander
Lou, Rui
Voroshnin, Vladimir
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Iowa State University Digital Repository, Ames IA (United States)
Authors
Person
Schrunk, Benjamin
Ames Laboratory Research Technologist II
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Journal Issue
Is Version Of
Versions
Series
Department
Physics and AstronomyAmes National Laboratory
Abstract
The Fermi surface plays an important role in controlling the electronic, transport and thermodynamic properties of materials. As the Fermi surface consists of closed contours in the momentum space for well-defined energy bands, disconnected sections known as Fermi arcs can be signatures of unusual electronic states, such as a pseudogap1. Another way to obtain Fermi arcs is to break either the time-reversal symmetry2 or the inversion symmetry3 of a three-dimensional Dirac semimetal, which results in formation of pairs of Weyl nodes that have opposite chirality4, and their projections are connected by Fermi arcs at the bulk boundary3,5,6,7,8,9,10,11,12. Here, we present experimental evidence that pairs of hole- and electron-like Fermi arcs emerge below the Neel temperature (TN) in the antiferromagnetic state of cubic NdBi due to a new magnetic splitting effect. The observed magnetic splitting is unusual, as it creates bands of opposing curvature, which change with temperature and follow the antiferromagnetic order parameter. This is different from previous theoretically considered13,14 and experimentally reported cases15,16 of magnetic splitting, such as traditional Zeeman and Rashba, in which the curvature of the bands is preserved. Therefore, our findings demonstrate a type of magnetic band splitting in the presence of a long-range antiferromagnetic order that is not readily explained by existing theoretical ideas.
Comments
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at DOI: 10.1038/s41586-022-04412-x. Copyright 2022 The Author(s). Posted with permission. DOE Contract Number(s): AC02-07CH11358; 2020R1A6A3A03037129; 11904144.
Description
Keywords
Citation
DOI
Copyright
Collections