An Investigation into the McKay Correspondence
dc.contributor.author | Hobart, Matthew | |
dc.contributor.department | Mathematics | |
dc.contributor.majorProfessor | Jonas Hartwig | |
dc.date | 2021-09-01T04:44:53.000 | |
dc.date.accessioned | 2021-09-09T16:53:40Z | |
dc.date.available | 2021-09-09T16:53:40Z | |
dc.date.copyright | Fri Jan 01 00:00:00 UTC 2021 | |
dc.date.embargo | 2021-07-06 | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | <p>The McKay correspondence states that there is a bijection between the McKay graphs of finite subgroups of $SU_2$ and Dynkin diagrams in the $ADE$ classification system of simply laced Lie algebras. We investigate this correspondence by finding the finite subgroups of $SU_2$ and explicitly constructing the McKay graph corresponding to each group. We then view these groups from the lens of algebraic geometry and go through the blow-up procedure for the corresponding Kleinian singularities to demonstrate that the blow-up graph, quite remarkably, yields another way to obtain the Dynkin diagrams.</p> | |
dc.format.mimetype | ||
dc.identifier | archive/lib.dr.iastate.edu/creativecomponents/855/ | |
dc.identifier.articleid | 1921 | |
dc.identifier.contextkey | 23695589 | |
dc.identifier.doi | https://doi.org/10.31274/cc-20240624-186 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | creativecomponents/855 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/qzXBPe0v | |
dc.source.bitstream | archive/lib.dr.iastate.edu/creativecomponents/855/M_Fox_Hobart_Thesis.pdf|||Sat Jan 15 02:13:15 UTC 2022 | |
dc.subject.disciplines | Algebra | |
dc.subject.disciplines | Algebraic Geometry | |
dc.subject.keywords | Representation Theory | |
dc.subject.keywords | Algebraic Geometry | |
dc.subject.keywords | McKay | |
dc.title | An Investigation into the McKay Correspondence | |
dc.type | creative component | |
dc.type.genre | creative component | |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 | |
thesis.degree.discipline | Mathematics | |
thesis.degree.level | creativecomponent |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- M_Fox_Hobart_Thesis.pdf
- Size:
- 347.03 KB
- Format:
- Adobe Portable Document Format
- Description: