An Investigation into the McKay Correspondence

dc.contributor.author Hobart, Matthew
dc.contributor.department Mathematics
dc.contributor.majorProfessor Jonas Hartwig
dc.date 2021-09-01T04:44:53.000
dc.date.accessioned 2021-09-09T16:53:40Z
dc.date.available 2021-09-09T16:53:40Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 2021
dc.date.embargo 2021-07-06
dc.date.issued 2021-01-01
dc.description.abstract <p>The McKay correspondence states that there is a bijection between the McKay graphs of finite subgroups of $SU_2$ and Dynkin diagrams in the $ADE$ classification system of simply laced Lie algebras. We investigate this correspondence by finding the finite subgroups of $SU_2$ and explicitly constructing the McKay graph corresponding to each group. We then view these groups from the lens of algebraic geometry and go through the blow-up procedure for the corresponding Kleinian singularities to demonstrate that the blow-up graph, quite remarkably, yields another way to obtain the Dynkin diagrams.</p>
dc.format.mimetype PDF
dc.identifier archive/lib.dr.iastate.edu/creativecomponents/855/
dc.identifier.articleid 1921
dc.identifier.contextkey 23695589
dc.identifier.doi https://doi.org/10.31274/cc-20240624-186
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath creativecomponents/855
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/qzXBPe0v
dc.source.bitstream archive/lib.dr.iastate.edu/creativecomponents/855/M_Fox_Hobart_Thesis.pdf|||Sat Jan 15 02:13:15 UTC 2022
dc.subject.disciplines Algebra
dc.subject.disciplines Algebraic Geometry
dc.subject.keywords Representation Theory
dc.subject.keywords Algebraic Geometry
dc.subject.keywords McKay
dc.title An Investigation into the McKay Correspondence
dc.type creative component
dc.type.genre creative component
dspace.entity.type Publication
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
thesis.degree.discipline Mathematics
thesis.degree.level creativecomponent
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
M_Fox_Hobart_Thesis.pdf
Size:
347.03 KB
Format:
Adobe Portable Document Format
Description: