Unambiguous Gibbs dividing surface for nonequilibrium finite-width interface: Static equivalence approach

Date
2014-01-01
Authors
Levitas, Valery
Levitas, Valery
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Aerospace Engineering
Organizational Unit
Journal Issue
Series
Department
Aerospace Engineering
Abstract

The definition of all properties of the nonequilibrium interface depends on the choice of the position of the dividing surface. However, the definition of its position has been an unsolved problem for more than a century. A missing principle to unambiguously determine the position of the Gibbs’ dividing surface is found: the principle of static equivalence. A sharp interface (dividing surface) is statically equivalent to a nonequilibrium finite-width interface with distributed tensile stresses if it possesses (a) the same resultant force, equal to the interface energy, and (b) the same moment, which is zero about the interface position. Each of these conditions determines the position of a sharp interface, which may be contradictory. This principle is applied to resolve another basic problem: the development of a phase field approach to an interface motion that includes an expression for interface stresses, which are thermodynamically consistent, and consistent with a sharp-interface limit. Using an analytical solution for a curved propagating interface, it is shown that both conditions determine the same dividing surface, i.e., the theory is self-consistent. The expression for the interface energy is also consistent with the expression for the velocity of the curved sharp interface. Applications to more complex interfaces that support elastic stresses are discussed.

Comments

This article is from Physical Review B89 (2014): 094107, doi: 10.1103/PhysRevB.89.094107. Posted with permission

Description
Keywords
Citation
DOI
Collections