Hydrating the Pseudomonas aeruginosa periplasm under desiccating conditions

Thumbnail Image
Date
2014-01-01
Authors
Wenner, Seth
Major Professor
Advisor
Larry Halverson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

Reduced matric water potential external to the cell has a desiccating effect on bacteria in dry environments. To facilitate hydration, cells must regulate their internal water potential. Accumulating small compatible solutes reduce the cytosolic water potential, though it is unknown how the periplasm of gram negative bacteria is hydrated. As this compartment houses many processes, hydration is important. Linear and cyclic osmoregulated periplasmic glucans are known to accumulate under water-replete (hypo-osmotic) conditions reducing the periplasmic water-potential relative to the cytosol, limiting swelling of the cytoplasmic compartment. Interestingly, we observed a greater accumulation of linear glucans in biofilm grown Pseudomonas aeruginosa cells on matric stress media, strongly suggesting a role hydrating the periplasm under low-water-content conditions. Additionally, deficiency of cyclic, but not linear glucans reduced survival during matric stress conditions, supporting the importance of glucans hydrating the periplasm. Mutants deficient in producing linear or cyclic glucans experienced increased envelope stress during growth on matric stress conditions as shown by the over-expression of the alginate biosynthesis operon - part of the AlgU/T dependent envelope stress response - resulting in a mucoid colony phenotype. Overexpression of the linear glucan biosynthesis gene is able to rescue cyclic glucan deficient mutants from alginate over-expression, suggesting some functional redundancy between the glucans. Overall, our findings suggest that accumulating periplasmic glucans moderate the envelope stress experienced by the cell under matric stress conditions by hydrating the periplasm.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
dissertation
Comments
Rights Statement
Copyright
Wed Jan 01 00:00:00 UTC 2014
Funding
Subject Categories
Supplemental Resources
Source