Experimental Realization of an Extreme-Parameter Omnidirectional Cloak

Date
2019-08-18
Authors
Zheng, Bin
Yang, Yihao
Shao, Zheping
Yan, Qinghui
Shen, Nian-Hai
Shen, Lian
Wang, Huaping
Li, Erping
Soukoulis, Costas
Chen, Hongsheng
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Journal Issue
Series
Department
Ames LaboratoryPhysics and Astronomy
Abstract

An ideal transformation-based omnidirectional cloak always relies on metamaterials with extreme parameters, which were previously thought to be too difficult to realize. For such a reason, in previous experimental proposals of invisibility cloaks, the extreme parameters requirements are usually abandoned, leading to inherent scattering. Here, we report on the first experimental demonstration of an omnidirectional cloak that satisfies the extreme parameters requirement, which can hide objects in a homogenous background. Instead of using resonant metamaterials that usually involve unavoidable absorptive loss, the extreme parameters are achieved using a nonresonant metamaterial comprising arrays of subwavelength metallic channels manufactured with 3D metal printing technology. A high level transmission of electromagnetic wave propagating through the present omnidirectional cloak, as well as significant reduction of scattering field, is demonstrated both numerically and experimentally. Our work may also inspire experimental realizations of the other full-parameter omnidirectional optical devices such as concentrator, rotators, and optical illusion apparatuses.

Comments
Description
Keywords
Citation
DOI
Collections