Monitoring antibiotic resistance in agroecosystems

dc.contributor.advisor Howe, Adina
dc.contributor.advisor Allen, Heather K
dc.contributor.advisor Jarboe, Laura
dc.contributor.advisor Moorman, Tom
dc.contributor.advisor Soupir, Michelle
dc.contributor.advisor Yu, Chenxu
dc.contributor.author Colgan, Phil John
dc.contributor.department Department of Agricultural and Biosystems Engineering (ENG)
dc.date.accessioned 2022-11-08T23:39:27Z
dc.date.available 2022-11-08T23:39:27Z
dc.date.issued 2020-12
dc.date.updated 2022-11-08T23:39:27Z
dc.description.abstract The livestock industry is the largest consumer of antibiotics worldwide. Antimicrobial resistant bacteria generated by this industry are introduced directly into the soil where we grow much of our food. Agricultural best management practices must be examined closely to identify those that may be improved upon in order to minimize impact on the evolution and spread of antimicrobial resistance. Monitoring for antibiotic resistance genes in the soil and water associated with agroecosystems can provide information regarding the impact these practices have on the spread of antibiotic resistance. The various methods of detection used for monitoring ARGs involve tradeoffs in sensitivity, diversity of targets, and throughput. The appropriate method used for monitoring ARGs in the environment is dependent on the scope of the experiment, and often multiple approaches are necessary to develop a comprehensive understanding of the complex processes involved in ARG dissemination in the environment. The experiments described in this dissertation leverage model systems simulating artificially drained crop soil along with a combination of methods used to monitor ARGs including shotgun metagenomic sequencing, MF-qPCR, and culture-based methods to assess the impact of various agricultural practices on the resistomes of agricultural soil and water. We found that the majority of the ARGs resulting from fertilization of crop soil with swine or beef cattle manure was not distinguishable from background by the end of our simulated growing seasons. However, those that did persist through the end of our studies were associated with mobile genetic elements that enhance the potential for those ARGs to transfer between members of a bacterial community. Additionally, we determined that swine and beef manure associated ARGs are transferred through the soil and into drainage water very differently.
dc.format.mimetype PDF
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/EzR2Pn8z
dc.language.iso en
dc.language.rfc3066 en
dc.subject.disciplines Agriculture engineering en_US
dc.subject.disciplines Water resources management en_US
dc.subject.keywords Agriculture en_US
dc.subject.keywords antibiotic en_US
dc.subject.keywords Manure en_US
dc.subject.keywords resistance en_US
dc.subject.keywords Soil en_US
dc.subject.keywords Water en_US
dc.title Monitoring antibiotic resistance in agroecosystems
dc.type dissertation en_US
dc.type.genre dissertation en_US
dspace.entity.type Publication
relation.isOrgUnitOfPublication 8eb24241-0d92-4baf-ae75-08f716d30801
thesis.degree.discipline Agriculture engineering en_US
thesis.degree.discipline Water resources management en_US
thesis.degree.grantor Iowa State University en_US
thesis.degree.level dissertation $
thesis.degree.name Doctor of Philosophy en_US
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Colgan_iastate_0097E_19206.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: