Minimum-fuel lunar transfers with engine switching and transients

Thumbnail Image
Date
1996
Authors
Rivas, Matthew
Major Professor
Advisor
Bion L. Pierson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Aerospace Engineering
Abstract

The investigation of minimum-fuel planar Lunar transfers are investigated for a variety of mission profiles. The problem is set within the context of the classic restricted three-body problem. Two different types of propulsive systems are studied including electric propulsion and nuclear thermal rockets (NTR) providing a range of initial thrust-to-weight ratios. The solution of the transfers is achieved by solving a series of simpler subproblems to obtain an estimate of the fully optimal trajectory. The series of subproblems is solved by a new dynamic boundary evaluation method. The full solution is then found using this estimate and a hybrid "direct/indirect" method. This solution determines the total time-of-flight based on a fixed thrust-coast-thrust engine firing sequence. The optimal transfers for a range of initial thrust-to-weight ratios are found and presented. The true optimal solution for a power limited spacecraft for a fixed time-of-flight depends on the engine firing switching function. The solution of the switching problem is extremely difficult and a three-stage methodology is developed. The first stage uses mixed-integer nonlinear programming (MINLP) to approximate the switching function's discrete characteristics. The second stage uses the MINLP solution and problem characteristics to solve a relaxation of the full switching problem and the final stage solves the full two-point boundary value problem from the estimates of the preceding stages. The switching solutions for a range of flight times are presented. The use of NTR propulsion introduces thrust transients which are modeled using the point mass mono-energetic nuclear equations and the rocket itself is modeled by a lumped heat-exchange system. The effects on an optimal transfer of the transients is found and presented.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Mon Jan 01 00:00:00 UTC 1996